Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species
نویسنده
چکیده
Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET) and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES's). Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES's. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens) constantly generate high current densities at a wide range of anode potentials (≥-0.3 or -0.2 V vs. Ag/AgCl), while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus) generate a relatively large current only at limited potential regions (-0.1 to -0.3 V vs. Ag/AgCl). The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades) of Geobacter.
منابع مشابه
Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems
BACKGROUND Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe3O4) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behav...
متن کاملSet potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms
a r t i c l e i n f o Higher current densities produced in microbial fuel cells and other bioelectrochemical systems are associated with the presence of various Geobacter species. A number of electron transfer components are involved in ex-tracellular electron transfer by the model exoelectrogen, Geobacter sulfurreducens. It has previously been shown that 5 main oxidation peaks can be identifie...
متن کاملIron-Oxide Minerals Affect Extracellular Electron-Transfer Paths of Geobacter spp
Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Ge...
متن کاملLong-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.
Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential), forming a biofilm extending many cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors,...
متن کاملGeneration of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells
UNLABELLED Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the high...
متن کامل